Comparing volume of a cone, cylinder, and sphere

Cassidy Fleury

$p = \frac{F/A}{T} = \frac{F/A}{F/I}$ $h = 2 T \cos(0)/prg$ Volume of cylinder

 $V = \pi r^2 h$

Volume: The amount of 3-dimensional space something takes up Radius: The distance from the center to the circumference of a circle

Volume of a cylinder vs cone

I predict that the volume of a cylinder will be _____ times the volume of a cone.

In order for this to be an accurate investigation, we must make sure that both objects have the same radius and height.

Radius of cone: 1.125 in

Radius of cylinder: 1.125 in

Height of cone: 3 in

Height of cylinder: 3 in

Next steps

What did you find?

The volume of a cylinder is **THREE** times the volume of a

cone.

OR

The volume of a cone is $\frac{1}{3}$ the volume of a cylinder.

We saw this visually, but let's look algebraically.

Cone: V=(⅓)πr^2h Cylinder: V=πr^2h

()

(V of cone)(?)=(V of cylinder)
(V of cone)(3)=(V of cylinder)

Plug in data

Cone: $(\frac{1}{3})\pi(1.125)^{2} * 3$ = $(\frac{1}{3})\pi(1.27)^{*}3$ = 1.26 in^3 Cylinder: $\pi(1.125)^{2} * 3$ = 3.8 in^3 Compare 3.8/1.26 is about **3**

Now, let's try and discover the formula for volume of a sphere.

100:1=1

01

First, lets check to see that our sphere and cylinder have the same radius

R=1 in

Now, how many cones of beans can fit in the sphere?

Answer: 2

So...what does this mean?

(volume cone1) + (volume cone2) = volume of sphere

What do we notice about the relationship between radius and height of sphere? Radius: 1 2 radii = height of the sphere Height: 2 How do we replace this in the formula $(\frac{1}{3})\pi r^{2} + (\frac{1}{3})\pi r^{2} + \frac{1}{3}\pi r^{2} +$ $((\frac{1}{3})\pi r^2 * (2r)) + ((\frac{1}{3})\pi r^2 * (2r)) = volume of a sphere$ $((2/3)\pi r^{3} + (2/3)\pi r^{3} = volume of a sphere$ $(4/3)\pi r^3$ = volume of a sphere

in

in