Cassidy Fleury

Coordinating Seminar
Hands on Activity

Comparing Volume of a cone, cylinder, and sphere

Grade level: 8th grade

Goals:

Students will determine the formula for a sphere using a cone, beans, and a tennis ball with the same radii and height.
Students will compare and identify the difference in volume of a cylinder and cone using the same radii and height.

Objective:

Given a hands-on activity comparing the volume of cylinders and cones of equal radii and height, students will complete an exit ticket with 100% accuracy.

Materials:

Mini party hats
Ruler
Beans
Paw-Patrol cylinder
Tennis ball (cut in half)

Vocabulary:

Volume:The amount of 3-dimensional space something takes up
Radius: The distance from the center to the circumference of a circle

Formulas to remember:

Volume of a cylinder: $\mathbf{V}=\pi \cdot r^{2} \cdot h$
Volume of a cone: $\mathbf{V}=(\ldots \quad) \pi \cdot r^{2} \cdot h$
Prediction time:
I predict that the volume of a cylinder will be \qquad times the volume of a cone.

In order for this to be an accurate investigation, we must make sure that both objects have the same radius and height.
The volume of a cylinder is __-_ times the volume of a cone.

Sphere:
Findings: () + () volume of a sphere
2 radii= \qquad of sphere

How do we replace this in the formula

$$
\begin{gathered}
(1 / 3) \pi r^{\wedge} 2^{*}()+(1 / 3) \pi r^{\wedge} 2^{*}(\quad)=\text { volume of sphere } \\
\left(\left((1 / 3) \pi r^{\wedge} 2^{*}(2 r)\right)+\left((1 / 3) \pi r^{\wedge} 2^{*}(2 r)\right)=\right.\text { volume of a sphere } \\
((2 / 3) \pi()+(2 / 3) \pi(\quad)=\text { volume of a sphere } \\
(\quad) \pi r^{\wedge} 3=\text { volume of a sphere }
\end{gathered}
$$

Exit ticket:

1) Using the formula for volume of a cylinder, calculate the volume of a cylinder with a radius of 3 inches and a height of 7 inches. What is the volume of a cone with the same radius and height?
2) If the volume of a cone is 10 inches cubed, with a radius of 5 inches, what is the height of the cone? What would the volume be of a cylinder with the same dimensions?
